750 research outputs found

    Optimal Biocompatible Solvent Design by Mixed-integer Hybrid Differential Evolution

    Get PDF
    In this study, a flexible optimization approach is introduced to design an optimal biocompatible solvent for an extractive fermentation process with cell-recycling. The optimal process/solvent design problem is formulated as a mixed-integer nonlinear programming model in which performance requirements of the compounds are reflected in the objectives and the constraints. A flexible or fuzzy optimization approach is applied to soften the rigid requirement for maximization of the production rate, extraction efficiency and to consider the solvent utilization rate as the softened inequality constraint to the process/solvent design problem. Such a trade-off problem is then converted to the goal attainment problem, which is described as the constrained mixed-integer nonlinear programming (MINLP) problem. Mixed-integer hybrid differential evolution with multiplier updating method is introduced to solve the constrained MINLP problem. The adaptive penalty updating scheme is more efficient to achieve a global design

    On the Momentum Dependence of the Flavor Structure of the Nucleon Sea

    Get PDF
    Difference between the uˉ\bar u and dˉ\bar d sea quark distributions in the proton was first observed in the violation of the Gottfried sum rule in deep-inelastic scattering (DIS) experiments. The parton momentum fraction xx dependence of this difference has been measured over the region 0.02<x<0.350.02 < x < 0.35 from Drell-Yan and semi-inclusive DIS experiments. The Drell-Yan data suggested a possible sign-change for dˉ(x)−uˉ(x)\bar d(x)-\bar u(x) near x∼0.3x \sim 0.3, which has not yet been explained by existing theoretical models. We present an independent evidence for the dˉ(x)−uˉ(x)\bar d(x)-\bar u(x) sign-change at x∼0.3x \sim 0.3 from an analysis of the DIS data. We further discuss the xx-dependence of dˉ(x)−uˉ(x)\bar d(x)-\bar u(x) in the context of meson cloud model and the lattice QCD formulation.Comment: 5 pages, 5 figures, final versio

    Outcome for self-expandable metal stents in patients with malignant gastroduodenal obstruction: A single center experience

    Get PDF
    SummaryBackgroundMalignant gastric outlet obstruction causes significant malnutrition and morbidity. The implantation of a metallic stent is an alternative palliative treatment to allow the intake of food in these patients.Patients and MethodsThirty-eight consecutive patients with malignant gastric outlet obstruction who had received an uncovered metallic stent placement in our department from April 2010 to April 2012 were enrolled for analysis. The mean follow-up time was 6.3 months. Food intake, measured by the Gastric Outlet Obstruction Scoring System, complications, duration of stent patency, and survival were evaluated.ResultsThe technical and clinical success rates of the procedure were 100% and 94.7%, respectively. The Gastric Outlet Obstruction Scoring System scores were significantly improved at 1 day, 7 days, and 30 days after the implantation compared with those prior to the procedure (p < 0.001). Aspiration pneumonia developed in two patients (5.2%) after the procedure. One of these patients developed respiratory failure and died 3 days later. Stent dysfunction developed in 11 of 38 patients (28.9%) during the follow-up period; one patient (2.6%) experienced migration of the stent 38 days later due to resolution of the stricture; 10 patients (26.3%) had stent restenosis. The median time of stent patency was 120 days. The presence of peritoneal carcinomatosis when the procedure was carried out was a significantly poor predictive factor of stent patency [hazard ratio (HR) 7.9, p = 0.039]. The median survival of the patients was 156 days. Poor performance status ≥3; HR 2.647, p = 0.012) and nongastric cancer origin (HR 3.466, p = 0.008) were associated with a significantly short survival time.ConclusionMetallic stent placement is an effective and relatively safe treatment for patients with malignant gastric outlet obstruction

    Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production

    Get PDF
    Background: Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but donot have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform suchenzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for aconsolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that cantransform multiple genes into a genome is instrumental. Moreover, a strategy to select cellulases that interactsynergistically is needed.Results: To engineer a yeast for CBP bio-ethanol production, a synthetic biology technique, called “promoter-basedgene assembly and simultaneous overexpression” (PGASO), that can simultaneously transform and express multiplegenes in a kefir yeast, Kluyveromyces marxianus KY3, was recently developed. To formulate an efficient cellulasecocktail, a filter-paper-activity assay for selecting heterologous cellulolytic enzymes was established in this study andused to select five cellulase genes, including two cellobiohydrolases, two endo-β-1,4-glucanases and onebeta-glucosidase genes from different fungi. In addition, a fungal cellodextrin transporter gene was chosen totransport cellodextrin into the cytoplasm. These six genes plus a selection marker gene were one-step assembledinto the KY3 genome using PGASO. Our experimental data showed that the recombinant strain KR7 could expressthe five heterologous cellulase genes and that KR7 could convert crystalline cellulose into ethanol.Conclusion: Seven heterologous genes, including five cellulases, a cellodextrin transporter and a selection marker,were simultaneously transformed into the KY3 genome to derive a new strain, KR7, which could directly convertcellulose to ethanol. The present study demonstrates the potential of our strategy of combining a cocktailformulation protocol and a synthetic biology technique to develop a designer yeast host

    Albuminâ bilirubin gradeâ based nomogram of the BCLC system for personalized prognostic prediction in hepatocellular carcinoma

    Full text link
    Background & AimsThe prognostic accuracy of individual hepatocellular carcinoma (HCC) patient in each Barcelona Clinic Liver Cancer (BCLC) stage is unclear. We aimed to develop and validate an albuminâ bilirubin (ALBI) gradeâ based nomogram of BCLC to estimate survival for individual HCC patient.MethodsBetween 2002 and 2016, 3690 patients with newly diagnosed HCC were prospectively enrolled and retrospectively analysed. Patients were randomly split into derivation and validation cohort by 1:1 ratio. Multivariate Cox proportional hazards model was used to generate the nomogram from tumour burden, ALBI grade and performance status (PS). The concordance index and calibration plot were determined to evaluate the performance of this nomogram.ResultsBeta coefficients from the Cox model were used to assign nomogram points to different degrees of tumour burden, ALBI grade and PS. The scores of the nomogram ranged from 0 to 24, and were used to predict 3â and 5â year patient survival. The concordance index of this nomogram was 0.77 (95% confidence interval [CI]: 0.71â 0.81) in the derivation cohort and 0.76 (95% CI: 0.71â 0.81) in the validation cohort. The calibration plots to predict both 3â and 5â year survival rate well matched with the 45â degree ideal line for both cohorts, except for ALBIâ based BCLC stage 0 in the validation cohort.ConclusionsThe proposed ALBIâ based nomogram of BCLC system is a simple and feasible strategy in the precision medicine era. Our data indicate it is a straightforward and userâ friendly prognostic tool to estimate the survival of individual HCC patient except for very early stage patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153250/1/liv14249_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153250/2/liv14249.pd

    Design of Diarylheptanoid Derivatives as Dual Inhibitors Against Class IIa Histone Deacetylase and β-amyloid Aggregation

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with multiple etiologies. Beta-amyloid (Aβ) self-aggregation and overexpression of class IIa histone deacetylases (HDACs) are strongly implicated with AD pathogenesis. In this study, a series of novel diarylheptanoid derivatives were designed, synthesized and evaluated for use as dual Aβ self-aggregation and class IIa HDAC inhibitors. Among these compounds, 4j, 5c, and 5e displayed effective inhibitions for Aβ self-aggregation, HDAC5 activity and HDAC7 activity with IC50 values of &lt;10 μM. The compounds contain three common features: (1) a catechol or pyrogallol moiety, (2) a carbonyl linker and (3) an aromatic ring that can function as an HDAC cap and create hydrophobic interactions with Aβ1-42. Furthermore, compounds 4j, 5c, and 5e showed no significant cytotoxicity to human neuroblastoma SH-SY5Y cells and also exhibited neuroprotective effect against H2O2-induced toxicity. Overall, these promising in vitro data highlighted compounds 4j, 5c, and 5e as lead compounds that are worthy for further investigation
    • …
    corecore